Lithium-Metal Anodes: Problems and Multiple Solutions Based on Electrolytes, Hosts, and Protective Layers

Ji-Guang Zhang (PI), Wu Xu, Jun Liu

Pacific Northwest National Laboratory

2018 DOE Vehicle Technologies Program Review June 18-21, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID #: bat362

Overview

Timeline

- Project start date: Oct. 2016
- Project end date: Sep. 2021
- Percent complete: 30%

Budget

- Total project funding \$50M
 - DOE share 100%
- Funding received in FY17: \$10M
- Funding received in FY18: \$10M

Barriers

- Low Coulombic efficiency
- Li dendrite growth
- Large volume change

Partners

- Pacific Northwest National Laboratory
- Stanford University
- SLAC
- Idaho National Laboratory
- University of Washington
- University of California at San Diego
- UT Texas

Relevance/Objectives

- Develop stable electrolytes to improve the Coulombic efficiency of Li metal anode
- Develop ex situ formed artificial SEI layer to protect Li metal against dendrite growth
- Develop efficient host for Li metal to minimize volume change of Li based anode
- Enable operation of thin Li metal in lean electrolyte conditions
- Enable high efficiency and safe utilization of Li metal anode for high energy density Li metal batteries required for long range EV applications

Milestones

- Investigate methods to extend the cycling and stability of Li metal pouch cells..
 (Dec-31, 2017). Completed
- Establish the high Ni NMC coin cell properties using the materials synthesized by the team and supplied by other sources (Mar-31, 2018). Completed
- Provide feedback on characterization of the new materials and concepts by the characterization team. (Jun-30, 2018). On track
- Develop and implement methods to improve and understand cycle and calendar life limitations of pouch cells. (Sep-30, 2018). On track

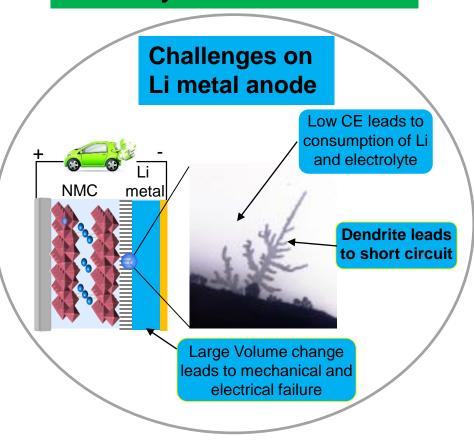
Approach

Stable Electrolyte (PNNL)

High concentration electrolyte

Localized High Concentration Electrolyte (LHCE)

> Non-flammable LHCE



≥300 Wh/kg Li metal pouch cells have been successfully fabricated and demonstrated >100 stable cycling.

Host:

- Form stable host for Li metal: Li-SiO composite (Stanford)
- Thin stable 3D conductive host without sacrificing the energy density (PNNL)

Battery500 Solutions

Simulation

Li metal batteries (UW)

Testing Li metal batteries (INL)

Protection layer:

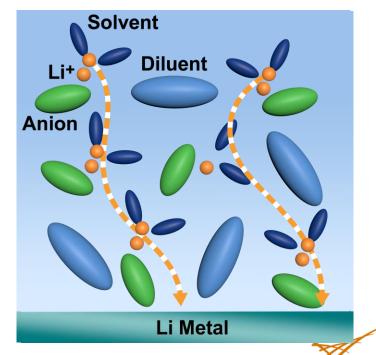
- Self-healing polymer (Stanford)
- Form stable artificial SEI layer via gas-phase reaction(Stanford)
- Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth (Stanford)
- ➤ Li-methyl Carbonate
 Protection Layer (UCSD)
- Solid state electrolyte (UT Austin)

Characterization:

- Reveal the atomic structure of Li metal by cryo-electron microscopy (Stanford/UCSD)
- X-ray characterization (SLAC)

Localized high concentration electrolyte (LHCE) for high efficiency Li metal batteries

Limitations of HCE:

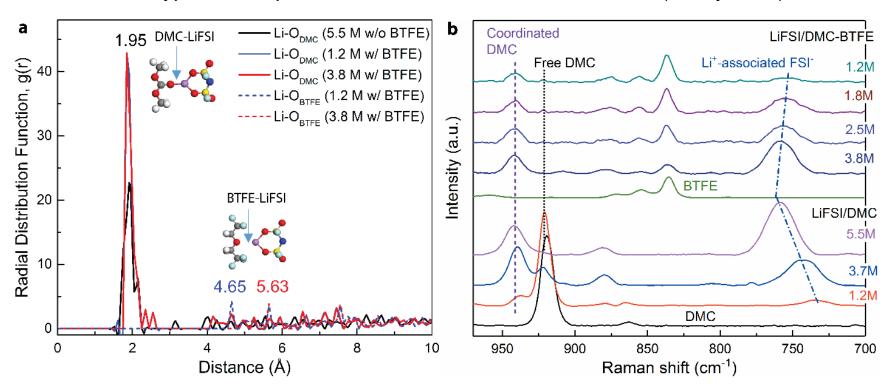

- High cost
- High viscosity
- Low conductivity

Rational design of LHCE electrolyte:

- a. A base solvent (DMC) with a high solvability of Li salt
- b. A Li salt (LiFSI) stable with Li metal anode
- c. A diluent (BTFE) with a very limited solvability of Li salt and fully mixable with base solvent
- d. Li⁺ will transports along the solvent/salts clusters with localized high salt concentration so advantages of HCE can be preserved.

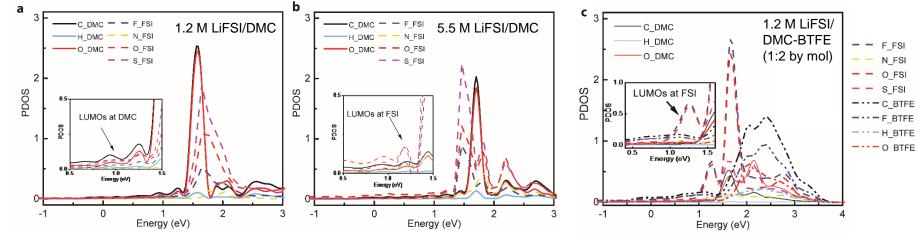
Advantages of LHCE:

- Retained all advantages of HCE
- Low cost
- Low viscosity
- High conductivity

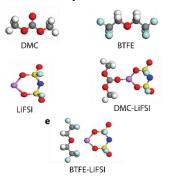


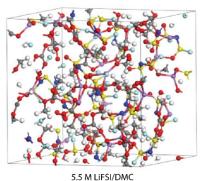
Formation of localized high concentration clusters in molecular level

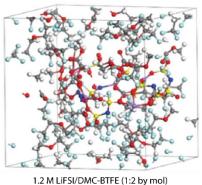
A typical example of LHCE: 1.2 M LiFSI in DMC:BTFE (1:2 by mole)



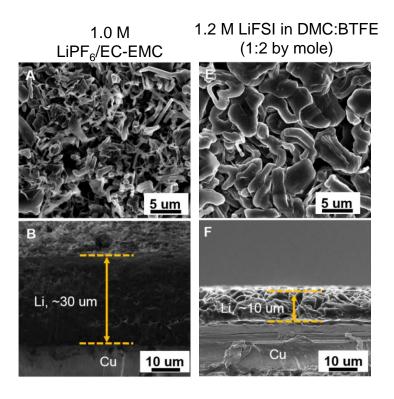
- a. DMC-LiFSI has binding that is much stronger than BTFE-LiFSI binding
- b. Addition of BTFE does not significantly affect the original LiFSI-DMC binding

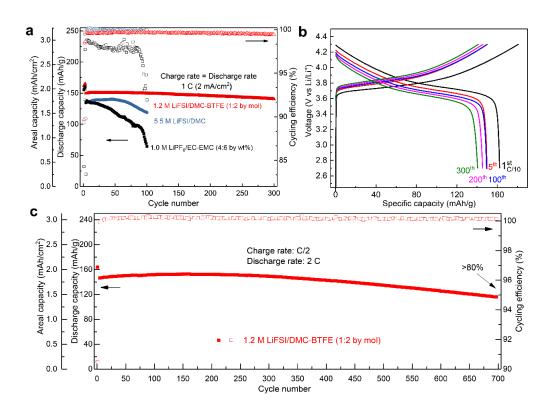





Projected density of states (PDOS) of each atom on the Li anode surface in different electrolytes

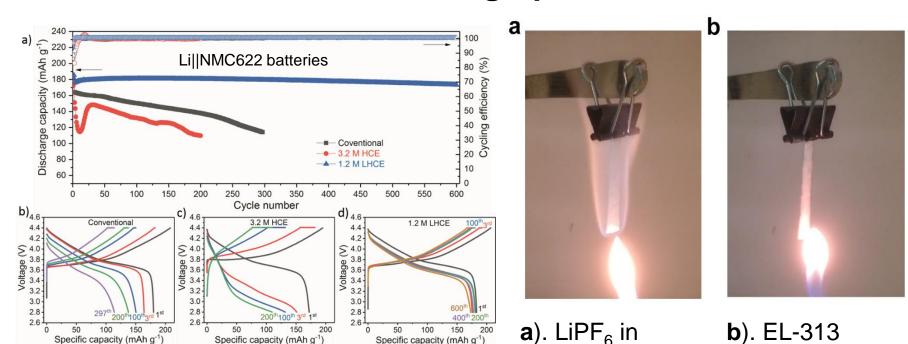
Snapshots of electrolyte/salt mixtures from AIMD simulations at 30 °C


- ➤ LUMO energies of FSI anion in HCE and LHCE shift to lower than those of DMC solvent so salt will be decomposed first to form a LiF rich SEI to protect Li metal anode.
- > All LiFSI salt molecules are closely coordinated with DMC instead of BTFE in the HCE and LHCEs.



S. Chen and J-G.Zhang et al. Adv. Mater. 2018, 30, 1706102

High performance Li metal batteries based on LHCE

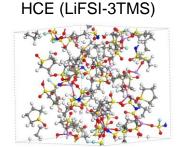

Highly packed granule Li particles (~10 μm) formed in LHCE electrolyte exhibits small surface area and will not penetrate separator

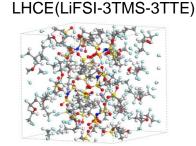
Stable cycling of Li/NMC batteries with LHCE (>80% capacity retention after 700 cycles at a high current density of 2.0 mA/cm²)

Nonflammable LHCE for high-performance LMBs

carbonates

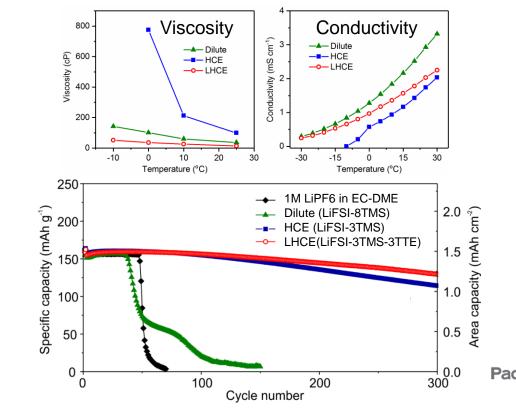
➤ High CE of LMAs and good cycle life of Li||NMC622 cells can be achieved with nonflammable EL-313.

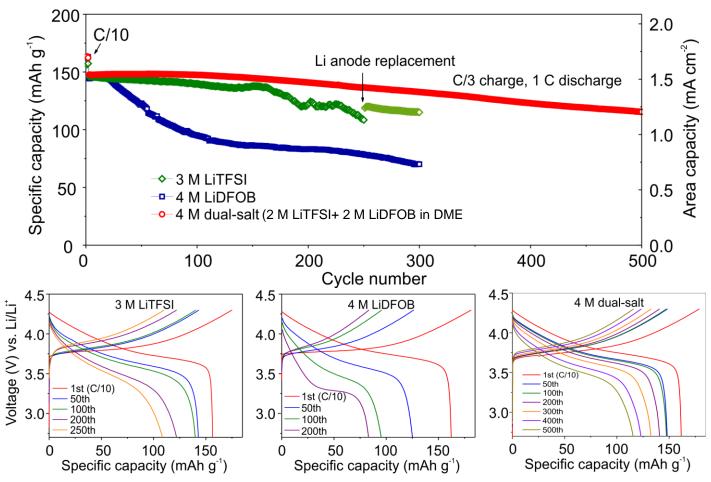




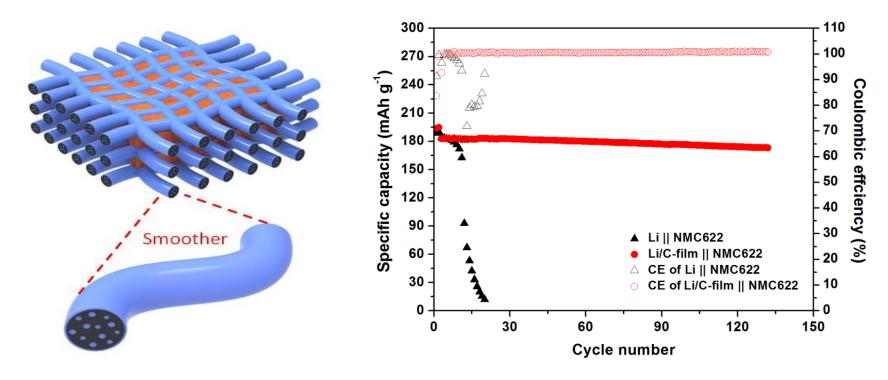
Localized high concentration electrolyte LiFSI-3TMS diluted by TTE

 a. Solvation structure in HCE and is retained with addition of nonsolvating TTE.




b. LHCE has a lower viscosity and higher conductivity.

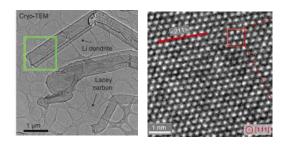
c. LHCE has a lower viscosity and higher conductivity.



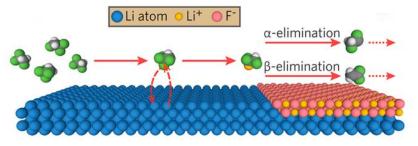
Li || NMC333 cycling performance

Dual-salt ether electrolyte leads to good cycling stability of Li||NMC cells.

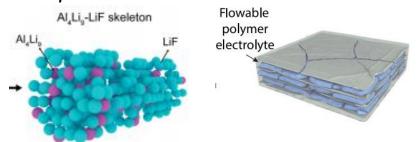
- Thin stable 3D architectures without sacrificing the energy density
- Controlled Li amount and low porosity
- Self-healing to prevent inhomogeneous Li metal deposition



Chaojiang Niu Jun Liu



Reveal the atomic structure of Li metal by cryo-electron microscopy


Science, 358, 506 (2017)

Form stable artificial SEI layer via gas-phase reaction

J. Am. Chem. Soc., **139**, 11550 (2017) Nano Lett. **17**, 3731 (2017); Nano Lett. **17**, 5171 (2017); ACS Nano **11**, 7019 (2017)

Form stable host for Li metal: Li-SiO composite

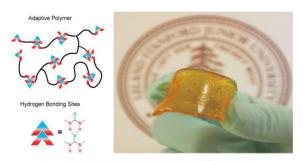
Proc. Natl. Acad. Sci., 114, 4613 (2017)

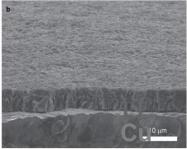
Sci. Adv. **3**, e1701301 (2017) Sci. Adv. **3**, eaao0713 (2017) Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth

Nat. Energy 1, 16010 (2016)

Proc. Natl. Acad. Sci., 114, 12138 (2017)

Nano Lett. 17, 1132 (2017)

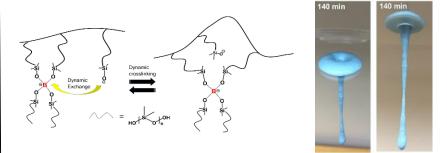




Soft, dynamic polymer coatings for Li

Self-healing polymer (SHP)

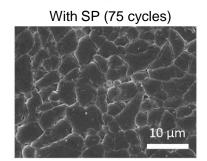
- · Low glass transition temperature
- Promotes uniform Li deposition



A highly viscoelastic polymer coated on Li metal anode leads to uniform Li deposition

Bao, Z., Cui, Y., et al. ACS Energy Lett. 1247–1255 (2016)

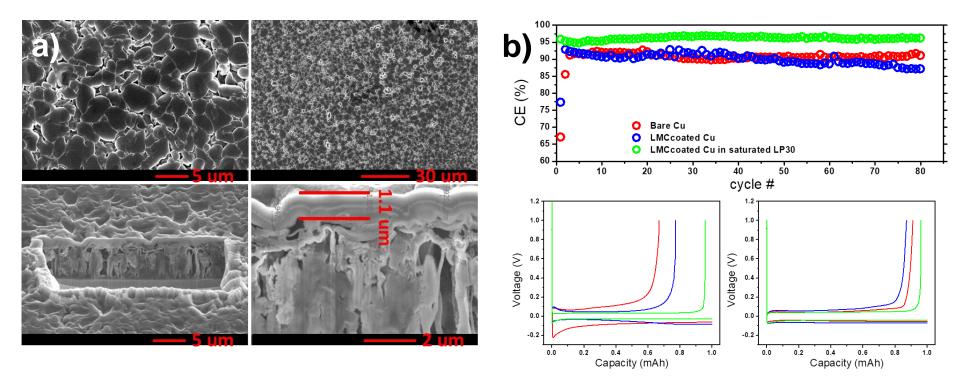
Silly Putty (SP)


- Liquid-like at rest
- Solid-like upon stress

Without SP (75 cycles)

Li filaments

5 μm


Cross-linked polymer enables adaptive interfacial layer for Li metal anodes.

Bao, Z., Cui, Y., et al. J. Am. Chem. Soc. 139 4815 (2017)

Li-methyl Carbonate Protection Layer

- FIB-SEM shows the LMC coating layer is around 1.1 μm that covers the plated Li
- ➤ The CE of bare Cu in LP30 is 90.5%, while the CE of LMC coated Cu in LMC saturated LP30 is improved to 96.1%. LP30: 1M LiPF₆ in EC/DMC (1:1)

Collaboration and Coordination with Other Institutions

Partners:

- Stanford University: Coating and host for Li metal anode, cryo-electron microscopy
- SLAC In situ X-ray characterization of Li metal anode
- University of California at San Diego: protective coating and in situ cryo-TEM characterization
- Idaho National Laboratory: pressure effect on Li cycling and test of PNNLmade pouch cell
- University of Washington: Simulation of Li metal batteries
- UT Texas: Solid state electrolyte
- Army Research Lab: electrolyte development
- University of Maryland: electrolyte/interphase

Remaining Challenges/Barriers

To enable a Li metal batteries with more than 500 Wh/kg, new electrolytes and protection layer will be developed to enable Li metal anode to operate at the following conditions at the same time:

- CE of Li metal > 99.9%
- Lean electroltye condition (< 3g/Ah)
- Thin Li metal (N/P < 2)
- High capacity (> 4 mAh/cm2) and high current (C/3)

Proposed Future Work

- An fundamental understanding on the stability of Li metal anode in non-aqueous electrolyte will be developed through simulation and characterization.
- New formulation of LHCE will be developed to reduce the cost of electrolyte and improve their safety.
- Electrolyte additive or mixed solvent/mixed salts will de developed to satisfy the multiple requirement (such as high current density and lean electrolyte condition) at the same time.
- > 3D conductive host will be combined with the optimized electrolytes to minimize the volume expansion of Li metal anode.
- The voltage stability of protective coating on Li metal anode will be tailored for Li/NMC cells.
- Better protection layer and/or separators will be developed to prevent Li dendrite growth in extreme conditions.

Summary

- LHCE enables high efficiency cyling of both Li metal anode (up to 99.5%) and stable cycling of Li/NMC cells (>95% capacity retention after 300 cycles and 80% capacity retention after 700 cycles in coin cells).
- Non-flammable LHCE enabled ≥300 Wh/kg Li/NMC pouch cells with more than 100 stable cycles.
- Several effective protection layers, including self-healing polymer, gas induced LiF layer, Li-methyl carbonate Layer etc have been developed to enable smooth deposition of Li metal anode.
- Several stable lithium-hosts have been developed to minimize the volume expansion of Li based anode.
- Advanced characterization techniques, including cryo-electron microscopy, in situ X-Ray Diffraction and Scattering and X-Ray Absorption Spectroscopy have been developed to understand the performance of Li metal anode with unpresented accuracy and in situ capability.

Acknowledgments

- ✓ DOE/VTO/Battery500 program
- ✓PNNL Team Members: Jie Xiao, Xiaodi Ran, Lu Yu, Chaojiang Niu, Shuru Chen; Xia Cao
- ✓ Battery 500 PIs and team members

